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Abstract

We describe a Monte Carlo solution for time dependent photon transport, in the difference formulation with the mate-
rial in local thermodynamic equilibrium, that is piecewise linear in its treatment of the material state variable. Our method
employs a Galerkin solution for the material energy equation while using Symbolic Implicit Monte Carlo to solve the
transport equation. In constructing the scheme, one has the freedom to choose between expanding the material tempera-
ture, or the equivalent black body radiation energy density at the material temperature, in terms of finite element basis
functions. The former provides a linear treatment of the material energy while the latter provides a linear treatment of
the radiative coupling between zones. Subject to the conditional use of a lumped material energy in the vicinity of strong
gradients, possible with a linear treatment of the material energy, our approach provides a robust solution for time depen-
dent transport of thermally emitted radiation that can address a wide range of problems. It produces accurate results in
thick media.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In earlier work [1,2], some of the authors introduced the difference formulation for photon transport,
under conditions of local thermodynamic equilibrium (LTE) for the material, and demonstrated a signif-
icant gain in computational efficiency for a Symbolic Implicit Monte Carlo (SIMC) [3,4] implementation
for optically thick media. In order to obtain accurate results, the zone size for this piecewise constant
implementation is limited to about one mean free path. The cause of this limitation is energy teleportation
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[5], wherein energy that is absorbed on one side of a zone is immediately re-emitted on the opposite side.
This defect causes a faster-than-physical propagation velocity for a Marshak (thermal) wave, and excessive
energy transport even under steady state conditions.

Densmore and Larsen [6] have shown that the local coupling of the radiation and the material energy is
correct in the Symbolic Implicit Monte Carlo method, and in the context of their analysis the SIMC method
has the diffusion limit, but they did not consider the impact of the spatial discretization of the material state
variable. Clouet and Samba [7] have shown that a piecewise linear discretization of the material state variable
produces the correct diffusion limit, while a piecewise constant treatment of the material state variable does
not. They did this in the context of a linearized form of the grey transport problem [8], for a time independent
solution. As they used the standard formulation of transport, Monte Carlo noise was an issue that led them to
the conclusion that practical application of their extension of the SIMC method might be limited by the noise
problem. For an extended discussion of what is meant when a discretization of the transport equation has the
diffusion limit, refer to [9].

The method of Clouet and Samba is based on a Galerkin [10] solution of the material energy equation and
uses a piecewise linear finite element basis that permits discontinuities at interior zone edges in order to rep-
resent the material state variable within a zone. In this paper, we extend the method of Clouet and Samba to
the time dependent solution of the non-linear equations of LTE transport in the difference formulation, using
piecewise linear basis functions, in slab geometry.

A significant difficulty that occurs in the standard formulation of transport when attempting to extend
SIMC with a finite element treatment of the material state variable is that of correctly sampling the source
term. Correct sampling of the emission spectrum, when it depends upon the details of the material opacity
at the temperature of the position sampled, requires an integral of the opacity against the Planck distribution
function for each particle sampled. In the difference formulation, the thermal emission in a zone does not
depend on the material opacity and this difficulty does not occur.

In addressing the non-linear equations of time dependent radiation transport, one has a choice between rep-
resenting the temperature, 7, or the equivalent black body radiation energy density at the material tempera-
ture, @ = aT*, using finite element basis functions. In the former, the material energy is linear when a constant
specific heat is used during a time step while the radiative coupling between zones is not. In the latter, the radi-
ative coupling between zones is linear while the material energy, expressed in terms of @, is not. Linear treat-
ment of @ produces the best accuracy near steady state, while linear treatment of the material temperature
produces the best accuracy when the problem contains violent time dependent behavior. This will become
clear in the numerical results presented in this paper.

A time dependent, self-consistent, piecewise linear solution of radiation transfer becomes non-mono-
tonic in the vicinity of a strong gradient. When a thermal wave impinges on one side of an optically thick
zone, the self-consistent solution of the energy equation drives the far side down in temperature, even
though the energy absorbed there is positive (but small). This problem becomes particularly serious when
the initial temperature of the material is small, as it can lead to negative temperature excursions that stop
the calculation. The technique of lumping the material energy (or mass) matrix [10] is a method used to
address this problem in conventional applications of the finite element method. We find lumping to be a
useful means of avoiding the monotonicity problem in the context of transport for thermally emitted pho-
tons. However, lumping reduces the accuracy of the solution in the affected zones. It gets the average tem-
perature correct, but introduces an error in the slope of a time dependent solution that would otherwise
be accurate.

In Section 2 we briefly describe the difference formulation for the transport of photons, under conditions of
local thermodynamic equilibrium, in the slab geometry environment that we will use for our exposition in this
paper. In Section 3, we sketch the solution method, and refer to other sections of the paper that provide exten-
sive details of the implementation. We provide numerical results in Sections 8 and 9, documenting the char-
acteristics of the method for problems involving an optical thickness of one mean free path per zone. In
Section 11 we demonstrate the performance of the method for a thermal wave penetration problem that is
optically thick, comparing its behavior to that of the piecewise constant treatment of the material state var-
iable. We provide a discussion in Section 12. The intervening sections and appendices of this paper delve into
the significant details of our method.
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2. The difference formulation

We want to solve the coupled equations for photon transport, Eq. (1) shown below, and the material
energy, Eq. (2), in the difference formulation. In this model for photon transport the interaction of the radi-
ation with the material (absorption and thermal emission) is accomplished using the simplifying assumption of
local thermodynamic equilibrium (LTE) for the material degrees of freedom. For the purpose of this paper we
restrict the problem to slab geometry, exclude physical scattering, and assume that the material is stationary.
Lifting these restrictions poses no significant difficulties for the Monte Carlo solution method we describe. We
have exposed the independent variables in the equations below for clarity:

10D(x, t;v; ) n M@D(x, t;v; 1) 1 0B(v, T(x,t)) OB(v,T(x,1))
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where G(x,t) is a prescribed energy source.

The field that is transported, D, is the difference between the specific intensity for photons, 7, and the black
body distribution at the material temperature, B(v, T(x, t)); that is = D + B provides the relationship between
the difference formulation and the standard formulation for photon transport with the material in LTE. It also
provides a means for mapping boundary conditions between the two formulations. It is useful to note that the
opacity corrected for stimulated emission, ¢/, the material energy, E,., and the local blackbody field, B, are
indirect functions of space and time through their dependence on the temperature, 7(x,?). This becomes
important when the temperature, 7(x, ), is a function of space during a time step.

We define the black body radiation energy density, @ = aT*, where « is the radiation constant. The factor-
ization of B into a strength times a frequency distribution function gives

B(v,T) = Cii b(v,T), (3)
with
/m b(v, Tydv =1, b(v,T) > 0. @)

Equivalently, one can express B in terms of @,
cP
B(v,®) =— D).
(v, @) = b(v. @) 5)

The source terms in the radiation transport equation for the difference field, D, can be factored using the chain
rule, giving
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The use of the chain rule to factor the source terms in the difference formulation is the equivalent of the fac-
torization of the Planck distribution, Eq. (3), used in the standard formulation of SIMC transport. The term
(47/c)(0B/0®) is a frequency distribution function, it is positive and its frequency integral is unity. The sam-
pling of this frequency distribution was dealt with in detail in the appendix of [2] and is further refined for the
finite difference case in Appendix B of this paper. The linearity of the strength of the source terms when written
as a function of @, and the non-linearity of the strength of the source terms when written as a function of 7, is
clear in Eq. (6).

3. Solution method

The sections that follow contain a detailed account of the implementation of our solution of Egs. (1)
and (2), using a SIMC method that employs a piecewise linear finite element treatment of the material
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state variable. Our method is similar to that of Clouet and Samba [7]. In a nutshell, our algorithm is orga-
nized as follows:

e The material state variable is represented by a finite element expansion in space. The time dependence is
given by the time dependence of the expansion coefficients.

e The source terms of the transport equation, which depend only upon the material state variable and no
other physical properties, are factored in terms of space, angle, and frequency distributions that are known
at the beginning of the time step (explicit treatment) and in terms of a strength that depends upon coeffi-
cients of the finite element expansion that will not be known until the end of the time step (implicit
treatment).

e The source terms are sampled and the transport equation is solved by a Monte Carlo simulation that prop-
agates these sources, which carry the unknown strength terms symbolically, along with any census particles,
which carry weights determined in a prior time step, to the end of the current time step.

e The equation for the change to the material energy is projected onto the basis functions (a Galerkin pro-
jection [10]). This produces a set of non-linear algebraic equations that relate the unknown coefficients of
the finite element expansion for the material state variable.

e The set of equations for the material state variable is solved, and the solution is then used to resolve the
unknown factors in the census particle list in order to prepare the initial conditions for the next time
step.

In addition to the finite element basis employed by Clouet and Samba that admits discontinuities at the
interfaces of interior zones, we also demonstrate a modification of this basis that enforces continuity of the
solution on interior zone interfaces. The finite element basis we use is described in Section 4 and our method
of collapsing to a basis that enforces continuity is described in Section 10.

The underlying SIMC method is based on the idea of factoring the source terms into space, time, frequency
and angular distributions that are known at the beginning of the time step (treated explicitly), and strength
that depends upon the radiation energy density, ® = a7, that will not be known until the end of the time
step (treated implicitly). This allows the source terms to be sampled in space, time, and frequency while leaving
the weights of the Monte Carlo particles unknown. The transport equation is then solved in terms of the
unknown values of the material state variable by Monte Carlo simulation. The source particle sampling in this
paper is substantially complicated by the piecewise linear treatment of the material state variable. This is
described at length in Section 6 as well as in the appendix.

As the Monte Carlo particles propagate they lose their energy to the matter. This energy deposition, along
with material equation of state and heating terms, must be accounted for in the solution of the material energy
equation. We use the Galerkin method in order to solve for the material state variable at the end of the time
step. In the Galerkin method, a set of algebraic equations for the material state variable is generated by pro-
jecting the material energy equation onto the basis functions. By using this solution strategy, we restrict the
solution for the material state variable to be a member of the space of functions spanned by the piecewise lin-
ear basis. This is discussed in Section 7.

The set of algebraic equations produced by the Galerkin projection of the energy equation is non-linear
in the unknown coefficients of the finite element expansion for the material state variable at the end of the
time step. We resort to Newton—Raphson iteration to solve this set of equations, employing the known
material state values at the start of the time step as the starting point. For each iteration of the solver,
the Newton—Raphson solution of the energy equation requires the Galerkin projection of the energy equa-
tion and its partial derivatives with respect to the unknown material state variable. The partial derivatives
are evaluated analytically, instead of numerically, and the consistency of the Galerkin projection and its
partial derivatives is of paramount importance to the robustness of the solver. Although we do not doc-
ument these issues completely, enough key details are described in Section 7 that our results can be
reproduced.

Once the solution for the material state variable is known, the unknown factors for the weights of Monte
Carlo particles born during the time step are determined and the census particle list is converted to numeric
weights in order to form the initial condition for the transport equation during the next time step.
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4. Discretization of the material state variable

In our piecewise linear Symbolic Implicit Monte Carlo solution of the difference formulation, we use piece-
wise linear basis functions to handle the spatial discretization of the material state variable. The spatial basis
functions, permitting discontinuity at zone boundaries, are the same as those that were employed by Clouet
and Samba [7] in their linearized treatment of the transport equation. Later on in our discussion, we will
describe how to constrain the solution of the material energy equation so that continuity is preserved at inter-
faces between interior zones. This is appropriate when the physical properties of the material do not undergo
significant change when crossing the interface.

We write out the linear basis functions, supporting discontinuities at zone edges, in slab geometry, in order
to establish our notation. Extension to two and three dimensional geometry was described by Clouet and
Samba, but will not be discussed here.

We define N zones, Z,, i € (1,N). In each zone there are L basis functions, y/, / € (1,L). In slab geometry,
L =2. Denoting the left and right boundaries of Z; by x; and x,.; respectively, the basis functions for slab
geometry are defined as

0 (x < x;),

1 () = ,ﬁ (i < x < xpp1), (7)
0 (xip1 < ),
0 (x <xy),

X?(x) = ﬁ (6 <x < xp11), (8)
0 (xi11 < x)

It is easy to see that
L
Z;{f(x) =1 (x5 <x<xy1) 9)

=1

and is zero otherwise. The fact that the basis functions add up to one within each zone makes it easy to assure
energy conservation, and can be exploited when sampling [7] although we do not do so.
Defining

2x) = 2/ (xig1 = x)) 2 (%), (10)

we produce a normalized basis function with unit integral. This version of the basis function is useful when
decomposing source terms for the purpose of Monte Carlo sampling. The concept will be extended to cover
products of basis functions later on.

It is sometimes useful to organize things in terms of the zone edges, x;, i € (1, N + 1), which are located at
the left and right edges of the zones, Z;, i € (1, N). We will be careful to point out when we do so.

Any piecewise linear function, F(x, ), can be represented in terms of the spatial basis functions, y/(x), with
the expansion

Fe) =Y Filed) = 0 S Flen =3 S A 070, (1)

N N N
i=1 =1 [=1 =1 I=1
The expansion permits discontinuity in F(x) at the internal interfaces between zones as there is no constraint
relating /7 and f;|,. If F(x) is continuous on the zone boundaries, /7 = f;\,. Without any constraint of con-
tinuity at zone boundaries, this expansion form is referred to as linear-discontinuous in some of the finite ele-
ment literature dealing with discrete ordinates transport.

In Eq. (11) we defined the spatial discretization method that we employ for the material state variable and,
therefore, for the transport source terms. The time step is the interval between ¢, and ¢, + Az. The temporal
discretization determines the time dependence of the expansion coefficients, f/(¢). We employ an implicit, back-
ward-Euler, discretization for the expansion coefficients in order to obtain apparent unconditional stability

for the time evolution, and correct coupling between the radiation field and the material temperature in the



476 E.D. Brooks Il et al. | Journal of Computational Physics 220 (2006) 471-497

diffusion limit [6]. The consequence of this choice is that a non-linear system must be solved for the unknown
values of the expansion coefficients at the end of the time step.

5. The solution of the transport equation

We employ the Symbolic Implicit Monte Carlo (SIMC) technique [3] to produce a statistical sample of the
solution to the transport equation that depends upon the unknown coefficients in the expansion of the mate-
rial state variable at the end of the time step. Either a finite element expansion for the material temperature,
T(x, 1), or for the black body radiation energy density at the material temperature, &(x,7) = aT*, can be used
to construct the source terms of the transport equation. In either case, the sources are sampled statistically as
Monte Carlo particles and Eq. (1) is solved by propagating the particles.

As shown in Eq. (6), the source terms for the transport equation can be factored using the chain rule,
cleanly separating the frequency dependence from the strength of the sources. We would like to note that it
is important to factor out the frequency dependence before decomposing the strength terms for the purpose
of Monte Carlo sampling. By doing this, all particles born at a given space and time point can be sampled
from the same frequency distribution.

Important assumptions of the scheme are that: the frequency distribution of thermally emitted photons, the
absorption coefficients of photons as they traverse the time step, and any scattering coefficients, are all func-
tions of space that are determined from information known at the beginning of the time step. We would like to
note that stimulated (e.g. Compton) scattering is not consistent with these assumptions, with enhancements of
the scattering coefficient being dependent upon the strength of the radiation field in the direction and fre-
quency being scattered into. One must face this issue when considering practical applications of our method,
but we ignore it for now.

In addition to the “‘symbolic” source terms in the transport equation, there are the initial conditions for
each time step (the census photons left from the previous time step), and the possibility of prescribed sources
of Monte Carlo particles from the boundary conditions. Unlike the sources associated with the 0B/d¢ and
0B/0x terms in Eq. (6), these sources have numeric weights without unknown factors. Using these sources,
the exact initial and boundary conditions for the transport problem are rigorously satisfied.

6. Monte Carlo sampling the source terms

In extending the Symbolic Implicit Monte Carlo method to a finite element treatment of the material energy
equation, we are free to choose between expanding ®(x,7) = aT* or the material temperature, T(x, ), in the
basis functions. Examining Eq. (6), the advantage of expanding @ becomes clear. With this choice the source
terms are linear in @ and this greatly simplifies the task of Monte Carlo sampling. It also makes the radiative
coupling between zones linear. The disadvantage of expanding @, even for a constant material specific heat, is
that the expression for the material energy is made non-linear. This problem becomes significant when one
needs to lump the material energy in order to prevent negative excursions of the material state variable in
the presence of steep gradients.

The alternative, expanding the material temperature, 7(x,?), in the linear basis functions, has its own
advantages and disadvantages. The treatment of the material energy becomes linear, enabling lumping and
straightforward coupling to other physics that treats the material temperature similarly. On the other hand,
Monte Carlo sampling of the source terms is more complicated and the radiative coupling between zones
becomes non-linear. We explore both approaches in our investigation, evaluating each one on its merits.

6.1. Expanding @ in the finite element basis functions

Expanding ®(x,7) = aT* in the basis functions provides the simplest Monte Carlo implementation of the
source terms:

0.0 =Y 0r =3 D dlrn =3 > ¢4, (12)
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In our detailed exposition of the Monte Carlo sampling of the source terms we assume the piecewise constant
(in time) implicit temporal discretization described in Section 4 where the d)f(t) abruptly jump to their end of
time step values, qbf(to + Ar), immediately after the beginning of the time step.

We now use the spatial expansion of @ defined in Eq. (12), the definition of the strength of the source terms
from Eq. (6) after factoring out the frequency distribution function given by (4n/c)(0B/0®), and the above
understanding of the temporal treatment, to write down the source terms for the Monte Carlo treatment.
First, we write the strength of the time derivative source from Eq. (6) in terms of normalized functions for
the generalized particle coordinates, for the purpose of defining a sampling scheme. In the last manipulation
we use the definition of the normalized basis function defined in Eq. (10):

4111 adsa(; = 41n Z dqfc)it( L 1(x) = 4n Z(S (1 = 10) (¢ (20 + A1) — ¢;(10)) 7 ()
— TS5 - )9+ A1) - 900 ) "

The distribution functions for generalized particle coordinates have been denoted by enclosure in []. The angu-
lar distribution function, 1/2, which provides for a uniform distribution for p in the range [—1, 1], is included in
the denominator, 8. There are two spatial distributions for particles born in zone Z;: those distributed accord-
ing to y!(x) and those distributed according to y?(x). The temporal distribution function is 6(¢ — #,), where d is
the Dirac delta function, indicating that all source particles are born at the beginning of the time step. In our
implementation we emit two equally sized samples of M particles in each zone, spatially distributed according
to y/(x) and having a numeric weight —(x;+; — x;)/(4nM). Each particle carries an unknown factor,
(¢!(to + At) — ¢'(to)), arising from the fact that ¢!(¢y 4+ A¢) is not yet known. The variable M is a parameter
controlling the sample count, and therefore the level of Monte Carlo noise appearing in the calculation.

The final detail is the frequency distribution for the source particles. As the frequency distribution must be
determined before we know ¢!(, + At), we use values extrapolated from past behavior %f (to + Atf) as a substi-
tute for this purpose. This is a simple linear extrapolation from the prior time step. The frequency distribution
is the finite difference form of (47/c)(0B/0®) using P(x, fp) and <1~3()c7 to + At) evaluated at the point, x, sampled
for each particle.

Lacking any constraint enforcing continuity of @(x, ) at the interior zone edges, x,, i € (2, N), there are two
components associated with the 0B/0x source term defined in Eq. (6). The first is a source of particles emitted
within zone Z,, again using the implicit time treatment discussed in Section 4,

_ ke 3Pi(x, 1) Z¢ d/, s ¢l = ¢i() _ pe (§7(to + A1) — §; (1o + A1)

C4n ox 4 X — X 4r Xip1 — X

(2ulcAt ($2(0 + Ar) — §l( + Ar)
=— . (14)
8n [Af][xi01 — xi]
As was discussed in [2], the integral of this source over the range of u is zero. We deal with this by sampling the
range of u from 0 to 1 and emitting a pair of particles of equal and opposite weight and direction. With that
understood, we can read off the distribution functions that have been denoted by enclosure in []. The distri-
bution function for p is 2u. The distribution function for the time coordinate is 1/Az, reflecting a uniform dis-
tribution across the interval from #, to 7, + Az. The spatial distribution function is 1/(x;+; — X;), reflecting a
uniform distribution across zone Z;. M particle pairs are emitted within each zone, one member of each pair
with a numeric weight of —cA#/8nM traveling in the positive pu direction, and the other with a weight of oppo-
site sign traveling in the —u direction. The particles carry the unknown factor (¢ () + At) — ¢! (to + At)). The
frequency of the emitted particles is sampled using the frequency distribution (4w/c)(0B/0®) evaluated using
@(x,tp) at the position sampled.
The second component of the dB/0x source term arises due to the possibility of a discontinuity of ®(x,?) at
the zone edges, x;, i € (1, N+ 1). This singular contribution to the 8B/0x source term is

S — x) (L (0 + A — ¢ (10 + A1) = —

~an [6(x = x))(¢1 (10 + &) — @7, (10 + A1)). (15)
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As was the case for the continuous dB/0x source, this source is handled with correlated particle pairs of equal
and opposite weight and direction, with the positive u particle being distributed according to 2u. The distribu-
tion function for the time coordinate is 1/Az. The spatial distribution function is é(x — x;), where Xx; is the loca-
tion of the interface between zones, or an exterior zone with a problem boundary. The values, dbé and db}\, 1
where N is the number of zones, refer to the boundary conditions for the left and right hand side of the problem,
respectively. In this case we are dealing with a source arising from a discontinuity and the frequency of the emit-
ted particles is sampled using the finite difference form of the frequency distribution (47t/c)(0B/0®), using ®(x, t,)
on each side of the interface being sampled. There are N + 1 zone boundaries that contribute this source term.

6.2. Expanding T in the finite element basis functions

An alternative choice for handling the source terms is to expand the material temperature, 7, in the finite
element basis functions:
N N N L
Teo,t) =Y Tilx )= Y Tilt)=) > Ti0)7x): (16)
=1 =1 =1 =1 =1
This choice for the finite element expansion has the advantage that the material energy, assuming a constant
specific heat during the time step, is linear. It is also likely that a second order accurate spatial treatment of
other physics, such as hydrodynamics, would be more easily coupled to our transport method if this choice for
the expansion of the material temperature is used. The disadvantages are the complexity of sampling the radi-
ation source strength that scales like 7%, and the resulting non-linear radiative coupling between zones. This
will become clear in what follows.
Using the definition, ® = aT*, and the expansion for the temperature in zone Z; given by Eq. (16), we
rewrite the source terms defined in Eq. (6), within zone Z,, again with the frequency dependence factored out:

a A(T(x,1)* a0 ) a 9
B T (;ﬁ(ﬁﬂ(ﬂ) == -5, (T HAT T 0+ 0T T A5+ AT T30 5+ T3 13).

(17)
In writing the last form of Eq. (17), we have suppressed the zone index, i, and have moved the basis function
index, /, to a subscript position in order to make it less cumbersome to write the powers of the temperatures
and the basis functions. This notation will also be used in Appendix A.

As we did when expanding @ in the basis functions, we use an implicit temporal treatment of the source
terms. The time dependent coefficients jump from their value during the previous time step, 7(zy), to their
end of time step value, T(¢, + Atf), right at the beginning of the time step, leading to a Dirac delta function
for the time derivative. Under this condition, Eq. (17) becomes

a O(T;(x,t 4 a
- L SISO 5 ) (T + A) ~ T2 + 4T3 00+ A)Talto + A0 — T3 To(0)) 3
+6(T (1o + An)T5(to + Ar) — T(10) T3 (t0)) 1725 + 4(T (o + Ar) T3 (8o + Ar)
= T1(t0)T5(10)) 1175 + (T3 (0 + At) = T5(t0)) 13} (18)

Generalizing the notion expressed in Eq. (10), we rewrite Eq. (18) in terms of the normalized functions

bl =<
5, Avs—
X112 :2_0?(1127
Ax_

1015 = 35 1113 (19)
3 Ax—3
X112 :%11127

Ax_
% =<4
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where Ax is the width of the zone. The result is

—% G(T"g;’ 0 __ [2]a><A)1con [6(t — to)]{(T‘l‘(to + A1) — THt)) 7] + (T3 (o + AT (1 + At)
— T3(to)Ta(t0)) [} 72] + (T (o + AO T3 (8o + At) — T3 (t0) T5(t0)) 1313
+ (T1(to + AT (to + Af) — T1(1) T3(10)) 11 13] + (T3 (to + A1) — Tg(tO))[g]}- (20)

We can now read off how to sample this source term. This source is uniform in yu, reflected in the distribution
function, 1/2, in the denominator, 207. The temporal distribution function is §(¢ — fo), indicating that all of the
source particles are born at the beginning of the time step. The numerical weight to be distributed among M
sets of five particles is —(aAx)/(10mw), with each member of a set of five particles receiving the weight —(aAx)/
(10mM). Table 1 shows the unique characteristics of the members of a set of particles, namely their respective
spatial distribution functions and unknown factors.

As was the case in our discussion of the source terms for linear @ in a zone, the frequency dependence of the
source term is factored using the chain rule before we decompose the strength of the source in terms of the
spatial basis functions. The frequency distribution of the sampled particles is obtained from the finite differ-
ence form of (41/c)(0B/0®), evaluated using the known temperature for the beginning of the time step, and the
extrapolated temperature for the end of the time step, at the spatial position that was sampled for the particle.
The details of sampling spatial positions within a zone, and sampling the frequency for a particle, are
described in the appendix.

The continuous contribution to the 0B/dx source from Eq. (6), in terms of the piecewise linear treatment of
the temperature in a zone, is given by

—%W: —%%(ZT“W?("O _ _%<Z T;(t)xf(x)> %(Z T?(r)xf(ﬂ). (21)

=1 =1 =1

In our implicit temporal treatment, 77(¢) during the time step is T!(ty + A¢). The space derivative of y2(x),
within zone Z,, is 1/(xs1 — x;). The space derivative of y!(x) has the opposite sign. This provides

_# ( L Ti(to + Al)xf(x)> (T2(tg + At) — T! (19 + A1)). (22)

Again, suppressing the index i/ with the understanding that we are dealing with values associated with zone Z;,
moving the / index to a subscript position to avoid confusion with powers of the expansion coefficients for the
temperature, and remembering that all temperature values are evaluated at the end of the time step, (7o + At),
we expand the sum,

uca

A (T3ad + 3T Toxins + 3T Tazns + Ta3) (T — Th), (23)

where Ax is the width of the zone.

Zdlt)):fnjﬂe of particles for the time derivative source terms in the expansion of 7'

Particle Distribution Unknown factor

1 7 (TH(to + Ar) — TH(10))

2 i (T (to + At)Ta(to + At) — T} (1) T2(10))
3 i (T3t + ANT3 (1 + Ar) — T} (10) T3 t0))
4 i (T1(to + AO)T3 (o + Ar) — T (1) T3 (to))
5 7 (T3t + A) — T3(10))

Each member of the set of five particles has a unique spatial distribution functions and an associated unknown factor.
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Writing Eq. (23) in terms of the normalized functions
Ax—
=71

Ax——
X%Xz = ﬁX%Xzy

» Ax—
X1y = EXIXZ»

B=7 0

and the distribution functions for the angular and time coordinates, we obtain

Bt (126 + TiTsfbl + 113008 + T30 (72 - 7). (25)
At this point, we can read off the sampling scheme for the Monte Carlo treatment of this source term. The
angular distribution function is 2u. As was the case for our piecewise linear treatment of @, we assure that
the total source integrated over the range of u is zero by sampling correlated particle pairs with equal and
opposite weights in the +u directions. In our Monte Carlo treatment of this source term, M sets of four par-
ticle pairs are created for each zone. The position coordinates for each of the four pairs in a set are sampled
from {3,772, 113,73}, and carry the unknown factors, {73(T,—T,),T:Ty(T,—T)), T\T3(T,— T)),
T3(T, — T))}, respectively. For a given pair, the particle sampled in the -y direction has the numeric
weight —ca/8nM, while the particle in the —u direction has the opposite sign. The frequency distribution is
(4nt/c)(0B/0®) evaluated at the spatial point sampled.

If there is a discontinuity in 7(x, ¢) at the zone edges, x;, i € (1, N + 1), the space derivative source in Eq. (6)
has a singular contribution, again with the frequency dependence factored out, given by
ca

~Eote =) (1) = (T2,(0)), e (LN +1), (26)
where T2(¢) is the boundary condition on the left surface of the slab, and T, +1(2) is the boundary condition on
the right and d(x — x;) is a Dirac delta function. Identifying the angular, temporal and spatial distribution
functions, and with our implicit differencing scheme that evaluates the temperatures at the end of time step
values, the singular contribution to the dB/0x source term becomes

2u|calt

- =) () = (1)), e 1N ) @)
where 2u is the angular distribution function for the +u particle of a £ particle pair, 1/A¢ is the distribution
function for particles uniformly distributed across the time step, and é(x — x;) is the spatial distribution func-
tion indicating that the particle pairs are born on the zone interface, located at x,. If M particle pairs are sam-
pled at each interface, the ones traveling in the +u direction have a numeric weight of —caAt/8nM and carry
the unknown factor ((7} - (T2 )%, the difference in the fourth power of the temperature on each side of the
interface. The frequency for the particles is sampled using the finite difference form of (4n/c)(0B/d®), evaluated
using @(x, 79) on each side of the interface.

7. Galerkin treatment of the material energy equation

In the prior section, we described how to deal with source particle sampling in the presence of unknown
coefficients, whether they be the ¢!(t + At) in the case of linear treatment of @ in a zone (as a function of
space), or the T ,’ (to + At) in the case of linear treatment of 7' in a zone. Using the basis function representation
of the source terms, correct spatial distributions can be established for Monte Carlo source particles whose
weights have not yet been determined.

We must solve the material energy equation, Eq. (2), in order to determine the unknown coefficients of the
expansion of @, or 7, at the end of the time step. The method of solving the material energy equation deter-
mines how we score energy deposition of the particles that get tracked in our Monte Carlo treatment of the
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transport equation, Eq. (1). To this end, we formally integrate the material energy equation from 7 to ¢y + At,
bring the change in material energy to the right hand side, and refer to the result as the non-linear function
F(x), which must equal zero. The F(x), here, is not to be confused with Eq. (11):

to+At 1
F) = Enad(T(5,16)) — Emad(T(x, 1o + A)) + 21 / dr / dv / due’ (v, T(x, 10))D(x, £ v; 1)
0 -1

to+At
+ / dG(x, 7). (28)
fo

We would like to note that we are using ¢, (v, T(x, %)), the opacity at the beginning of the time step, for the
time integral of the difference field. In order to run the Monte Carlo solution to the transport equation, any
absorption and scattering cross sections must be evaluated using temperatures from the beginning of the time
step, 7(x, o).

F(x) is a non-linear function of the ¢! (¢, + At), or the T'(t, + At), as the case may be. If the unknown coef-
ficients are the qu (to + At), the non-linearity occurs in the expression of the material energy. If the coefficients
of the expansion are the T'(ty + Af), the non-linearity occurs in the unknown factors in the time integral of
o' D. The local heating rate, G, is prescribed.

Generally, the function F(x) is also a non-linear function of the position coordinate, x. Because of this we
pursue a Galerkin treatment for the solution of F(x) = 0; we generate a set of algebraic equations to solve for
the expansion coefficients, ¢! (t, + At) or T'(t, + At) as the case may be, by requiring that the projection of
F(x) onto the basis functions y}(x) defined by,

_ iy
—/dx,(j(x)F(x), (29)
be zero.
Identifying the terms in F(x) from Eq. (28), we define
— [ @l (30)
to+At 00 1
(O'D)f :21t/dxx;f(x)/ dt/ dv/ dud’ (v, T (x,2))D(x, t; v; 1) (31)
ty 0 -1
and
to+At
_ k
= /dx/{ dy;(x)G(x,1). (32)

In terms of these definitions, we can write the algebraic system of equations we must solve as
k
FY = EN(ty) — Ef(ty + At) + (eD); + G; = 0. (33)

The projection of the material energy at the start of the time step, E"(to) depends only upon known variables.
The projection of the heat source during the time step, Gk is prescrlbed The projection of the material energy
at the end of the time step, E (to + At), is non-linear when expressed in terms of the ¢!(¢y + A¢) and linear
when expressed in terms of the T!(ty + At). Additionally, it depends only upon the coefficients for basis func-
tions in the same zone. The projection of the energy deposited from photon transport, (aD) is linear if the
source terms are expressed in terms of the ¢!(# + A¢) and non-linear when the source terms are expressed in
terms of the T!(¢) + At). It also has a component that comes from the census particles from the prior time step
that can be considered an initial condition for the difference field at the start of the time step.

As noted above, and further exposited below, the system of algebraic equations, F’ f = 0, is non-linear in its
unknowns and we employ Newton—Raphson iteration for the solution. We start with a guess for the solution,
the value of the dependent variables at the beginning of the time step, or some extrapolated value, and eval-
uate both F" and the partial derivatives of F" with respect to the unknowns at this starting point. We then
solve a hnear system for the error, producmg a new value for the solution. This process is iterated until con-
vergence is achieved. Our solution strategy, then, boils down to evaluating the projection of the material



482 E.D. Brooks Il et al. | Journal of Computational Physics 220 (2006) 471-497

energy at the end of the time step, Ef(to + At), the projection of the absorbed energy, (aD)f, and their deriv-
atives with respect to the unknown variables at the trial values for the solution, and then refining them using
Newton—Raphson iteration.

We start with the material energy in terms of the ¢.. Inverting ® = aT*, we have T = ®'*/4"* The energy
density of the material, assuming a constant specific heat, ¢,, and a constant material density, p, is

E(0(x)) = L0V (). (34)

In zone Z;, &(x,1?) is given by

D(x,1) = ¢, ()7 (x) + 7 ()77 (x) (35)
The material energy density within the zone, then, is
Ei(x.1) = 5o (0l (07} () + 92 (077 0 (36)

and the total material energy is
x,0) =Y Ei(x,1). (37)

The projection of the material energy, defined above, is

- / A (¥)E(x, 1) = / A (¥)E; (x, 1), (38)

where the basis function yj selects i =.
We find that the E" may be evaluated, in terms of qb (¢) and q’)?(t), in closed form using a symbolic manip-
ulation package such as Mathematica,

Ejl(t) PIC/;4AX(5¢7/4+10¢T/2 ;/4+ 15('155/4 1/2+2O¢ ¢3/4+ 16¢3/4¢2+12¢1/2 5/4+8¢1/4¢3/2

HABY/ S0 + 91 (01 + 97, (39)

where Ax is the width of zone j. We have suppressed the common subscript, j, on the right hand side, and have
moved the basis function indices to the subscript in order to cleanly display the fractional powers. All of the ¢
are understood to be functions of time, . EZ( t) is obtained by symmetry.

For the Newton—-Raphson iteration of the solution, we require the partial derivative of E () with respect to
¢1 and ¢,. These, again, can be evaluated in closed form:

1
a]gfb(f) _ 510/2 Ax(5677 + 1567461 4 30,01 + 5047 ¢
45702, + 5141493 + 3203/%) /(45(614 + V4 (D12 + ¢V, (40)
1
ag:;s(z) ’01/34Ax( 3/2+3¢5/4 l/4+6q§ ¢1/2+ 10(]5?/44);/4
+60176 301762 +037)/(45(81" + ) (617 + 927))), (41)
B _OE() N
3~ ob, 4
OE;(t)  OE;(1)
3, ~ o, )

The non-linearity of the material energy when we expand @ in the basis functions is clear.
At the cost of a non-linear treatment of the source terms for the difference field, we can have a linear treat-
ment of the material energy. Again, assuming a constant specific heat, we have
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E(T(x)) = pe.T(x), (44)

Ti(x,0) = T (0)x; (x) + T3 ()73 (x) (45)
and

0= a0, 719), “

where Ejz(t) is obtained by exchanging the basis function indices, 1 and 2, on the right hand side. Unlike the
case for linear @, the linearity of the material energy expressed in terms of 7" allows one to cleanly separate
the portion of the energy due to 7; ! from the portion of the energy due to T2 When the consistent projection
of the material energy onto the ,( generates trouble in the presence of steep gradlents we can lump the mate-
rial energy on each end of the zone so that E1 depends only upon T, ! and E2 depends only upon 77: 2

pc,Ax
Ek( )lumped 12 Tk( ) (47)
This corresponds to adding the off-diagonal terms in the 2 X 2 matrix representing the heat capacity within a
zone to the diagonal terms. This reduces the accuracy of the time dependent solution, but can be used to re-
move the monotonicity problem that would otherwise occur, thereby avoiding negative temperature solutions.

We are left with

(oD)! = 2 / d / " / dv / Ay (), (v, T, 1)) D, 5 v; 1) (48)

understanding that in addition to contributions from numeric (census) particles, contributions will come from
symbolic particles carrying unknown factors involving c]S (to + At), or T!(to + At). In the case of a constant
o (v, T(x,1)), as a function of temperature, the contribution of a partlcle track to the (GD) can be evaluated
in closed form. In the case of a temperature dependent opacity, one might have to execute a multl-step numer-
ical integration along the track, or use the first few terms of a power series expansion.
Separating the energy depositions from the different particle types when we are expanding the source terms
in terms of the qﬁf , the projection of the energy deposition can be written as

N L N
=NE+ "N (DDT)($1(t) — ko + Ar)) + > (DDX,)5 (] (o + At) — ¢7 (1o + A1)
=1 =1 =1
N+l
+ > (DELTA) (97 (to + At) — (10 + Ar)), (49)
i=1
where Nf is the contribution from census particles from the prior time step, (DDT'! ) is the contribution from
0/0t source particles born via ,(,( ) in Eq. (13), (DDX; ) is the contribution from a/ax source particles born via
Eq. (14), and (DELTA4; ) is the contribution from 6/6x source particles born via Eq. (15). In order to get the
actual contribution to the energy deposition, these matrix elements must be multiplied by the appropriate un-
known factors. The coefficients with out of range indices, ¢3(z) + Az) and ¢y, +1(to + At), represent prescribed
boundary conditions for the problem.
The structure of the energy deposition when expanding 7 in the finite element basis in order to generate the
source terms can be similarly expressed in terms of 10 different particle types and appropriate unknown
factors.

7.1. Scoring a particle track

The D(x,t;v;u) associated with a Monte Carlo particle track is
cDye M=) §(x — xg — poc(t — 10))d(v — vo)d( — o), (50)

where D, is the weight of the particle at the start of the track and (xo, 7o; vo; o) are the generalized coordinates
of the particle at the start of the track, not the start of the time step. We are assuming, for the purpose of this
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discussion, that the track is made entirely within zone Z; and within the time step, and that ¢/,(v,7) is inde-
pendent of temperature. The discussion can be extended to cover the more complicated case.

The contribution of a particle track, defined in Eq. (50), to the term (o-D)f, defined in Eq. (48), is calculated
(modulo any unknown factor) by inserting the expression for the particle track into Eq. (48) and evaluating
the integral. The integral over v selects ¢/ (vy) and the integral over u drops out trivially. The remaining delta
function, enclosed in the integral over x, converts the x in the basis function to xq + ugc(z — t,), obtaining

to+' v
/ decal, (vo) s (xo + poc(t — 1)) Dyeal0)eli=) — / dteal,(vo) ;s (xo + pgct) Doe %0, (51)
0

fo
For y/l the result is

7

Do (ko + ey, (o)t + 0, (vo) (X0 — Xis1)) et (52)
a/,(vo) (xi1 — x;) 0
For y; the result is
0
o+ o0}t + 0400) 0 =) e 53
GQ(VO)(XM —X;) /
The sum is
0
Doeﬂrg(vo)ct 7 (54)

l/
this being the weight lost by the particle during the track. The weight, Dy, may contain an unknown factor,
leading to scoring the track in the appropriate matrix element.

8. Numerical results with a piecewise linear @

In presenting numerical results employing the piecewise linear treatment of @, our goal is to demonstrate
the lack of monotonicity that occurs in the presence of strong gradients and to demonstrate the advantage for
this expansion choice near steady state. The basic test problem that we use for this demonstration is one where
a finite slab is abruptly subjected to an incoming black body radiation flux on the left boundary while the right
boundary radiates freely with no incoming radiation flux. Assuming that the incoming black body flux corre-
sponds to a temperature higher than the initial material temperature, and with an initial radiation field that is
in equilibrium with the material temperature, a thermal (Marshak) wave propagates from the left to the right.
The material conditions eventually come to steady state and there is a steady energy flow through the material.

In Fig. 1 we show an early time result for such a problem. The grey opacity is one mean free path per cm
and the specific heat of the material is given by pc, = 0.1 jerk/cm’ keV.! The initial temperature is
kT = 0.4 keV and the slab is subjected to a k7= 1 keV black body applied on the left hand side at the start
of the simulation. The time step size is 0.001 sh. With the dotted line, we show the material temperature at
0.03 sh using zones that are 1 cm thick, five zones for the problem. The solid line shows the 50 zone converged
solution using the same computational method. The material temperature is discontinuous at zone bound-
aries, this being allowed by the finite element basis choice.

Two specific features of the five zone solution are notable. The first is that the curvature provided by the
linear treatment of @ is a poor fit for the leading edge of a Marshak wave, as demonstrated by comparison to
the converged solution. The second is the relatively severe undershoot for the right side of the first zone, rel-
ative to the converged solution, occurring in spite of the fact that the energy deposited on this side of the zone
is positive. This undershoot is a property of the finite zone size, not the finite time step size. It results from the
self-consistent solution of the material energy equation given the lopsided energy deposition in the first zone.
The existence of the undershoot prevents us from running with a zero initial material temperature. The non-
linearity of the material energy, when expressed in terms of @, makes it difficult to remove this pathology.

' Our units are 1 sh (shake) = 10~® s; temperature is measured in energy units, k7T in keV; frequency is measured in energy units, /v in
keV; and the material energy is measured in jerks, 1 jerk = 10° J.
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Fig. 1. A problem demonstrating the monotonicity issue, at a time 7 = 0.03 sh. The right hand side of the first zone has dropped below the
initial temperature, k7 = 0.4 keV, even though the energy deposited there has always been positive. The solid line shows the converged, 50
zone, solution. The dotted line shows the five zone solution. The solution for the temperature within the zone is curved because it is
@ = aT* that is represented as a linear function within a zone.

Although the lack of monotonicity in the presence of steep gradients is a serious difficulty that limits the
utility of this formulation, the linear treatment of @ within a zone leads to a very accurate solution for prob-
lems near steady state where such steep gradients do not exist. In Fig. 2 we show the solution for the problem
defined above at a late time near steady state, again comparing the five zone solution to the converged 50 zone
solution. Only the boundary layer in the last centimeter at the right hand side of the 5 cm thick slab is shown,;
it has one zone for the five zone solution and 10 zones for the 50 zone solution. The treatment of the boundary
layer is fully converged with the 50 zone solution. In the interior of the slab, the five zone solution is in com-
plete agreement with the 50 zone solution, reflecting the accuracy of the linear treatment of @ for these phys-
ical conditions. In the first mean free path on the left hand side of the slab there is another boundary layer, but

this is not shown in figure.

\ \
4 4.2 4.4 4.6 4.8 5
position (cm)

Fig. 2. The outer edge of the slab of the problem of Fig. 1, one mean free path thick, shown at a late time near steady state. For the five
zone discretization, the span from 4 to 5cm is represented with one zone. This result is shown in the dotted line. For the 50 zone
discretization, the same span is 10 zones, shown in the solid line. The small difference is the influence of the boundary layer.
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9. Numerical results with a piecewise linear T

Given the monotonicity issue that has surfaced, we will now focus on the development of the piecewise lin-
ear treatment of the material temperature, 7, in our remaining exposition. First, we repeat the problems run in
Figs. 1 and 2 so that we may compare, generally, the characteristics of the two choices for the material state
variable, @ and 7. We will then show how lumping the material energy addresses the problem with
monotonicity.

The results for the problem of Fig. 1, which uses the finite element expansion of @, are repeated using the
finite element expansion of T in Fig. 3. Comparing Figs. 1 and 3, we see that the converged 50 zone result is
identical, and that the linear treatment of 7'in a zone provides a better match when compared to the converged
solution for the leading edge of the Marshak wave. The linear treatment of 7 in the zone also tends to produce
less undershoot on the back side of a zone in the presence of a strong gradient, although an undershoot is still
present and must be dealt with.

The results for the problem of Fig. 2, which uses an expansion of @ in linear basis functions, are repeated
using the linear expansion of 7 in Fig. 4. Comparing Figs. 2 and 4, we see that the linear treatment of ¢ does
better, compared to the linear treatment of 7, with small zone counts near steady state conditions, although
the second order accuracy provides for an accurate solution with only a modest increase in zone count.

The improved undershoot in the presence of strong gradients makes the linear treatment of 7" more robust
for time dependent problems, but it still suffers from the monotonicity problem. These undershoots will cause
a negative temperature if the initial temperature in front of an advancing Marshak wave is low enough. The
linear treatment of the material energy makes it possible to lump the material energy, regaining monotonicity
in the presence of a strong gradient.

In Fig. 5 we explore the effect of a lumped treatment of the material energy. We show the material temper-
ature for the problem of Fig. 3, except that the initial temperature is reduced to 0.2 keV and the result is shown
at a slightly later time of 0.035 sh, adding results for a lumped material energy with the dotted line. The dis-
continuous solid line is the result without lumping. The continuous solid line is the converged 50 zone solu-
tion. By lumping the material energy we make an error that causes the slope within a zone to be incorrect. In
order to minimize any accumulated error due to lumping, we employ conditional lumping in problems we
show later in this paper. In conditional lumping, we lump the material energy in a specific zone only during
a time step where failing to lump would cause a negative temperature excursion.

temp (keV)

e T T T T 1
0 1 2 3 4 5

position (cm)

Fig. 3. A repeat of the calculation of Fig. 1 using a linear expansion of 7 for the source terms. The dotted line is the five zone solution. The
continuous line is the converged 50 zone solution.
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Fig. 4. A repeat of the calculation of Fig. 2 using a linear expansion of 7 for the source terms. The dotted line is the five zone solution, one
zone in the centimeter span shown. The solid line is the converged 50 zone solution.

temp (keV)

position(cm)

Fig. 5. A calculation showing the effect of continuous lumping. The time, # = 0.035 sh. The dotted line is for the five zone lumped case,
with the discontinuous solid line not lumped. The solid continuous line is the converged 50 zone case.

10. Constraining the solution to be continuous

Our choice for the finite element basis expansion allows discontinuity in the material temperature at inter-
nal zone interfaces, a situation also referred to as linear-discontinuous in some of the finite element literature.
The cost of allowing these discontinuities is that we must deal with 2N unknowns where N is the number of
zones in our one dimensional slab geometry setting. This can substantially increase the cost of the non-linear
system solve and allow any undershoot to be worse than would occur if the left and right hand temperatures of
an internal zone interface were constrained to agree. In this section we discuss, briefly, how to produce the
solution corresponding to a basis that enforces continuity on the zone interfaces internal to the problem
domain. This procedure is useful when the opacity is not discontinuous at the interface between zones, and

can be applied selectively.
A basis function set that provides for a single temperature at each internal zone interface can be defined as

follows:
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Vi) = 1 (x),
Vi) = 7, (0) + () (1<i<N), (55)
U1 (%) = 13 (%)
By expanding the material temperature in this basis, there are N + 1 coefficients for the expansion, these being
the values of the material temperature on the zone interfaces, both internal and external.

The projections of F{(x) defined by Eq. (28) on the F}’-’, can be obtained adding the appropriate F’ j‘ defined
by Eq. (29):

FY =F!,
F/ =F> +F' (1<i<N), (56)
FAw/H :Fil'

These projections are required for the Newton—Raphson solution of the non-linear system that represents the
energy equation in terms of the s basis and are evaluated at the temperatures that are iterated to solution.

The partial derivatives of the F;/f with respect to the unknown coefficients of the temperature expanded in
the i, basis, evaluated at the iterated zone edge temperatures, are also needed for the Newton—Raphson solu-
tion. These are obtained by adding the partial derivatives with respect to the coefficients of y? , and /!, eval-
uated at the temperature that is now shared between them.

The process collapses the 2N x 2N Jacobian of the non-linear system in terms of the y basis to a
(N + 1) x (N + 1) Jacobian in terms of the i/ basis (for a 1-D problem), requiring only addition of matrix ele-
ments. This obtains the solution for the i basis with a relatively local modification of the code used to com-
pute the solution in terms of the y basis. In addition, the dB/dx source particles associated with the
discontinuities at interior zone interfaces that are not allowed with the  basis need not be emitted as their
weights will always be zero. This leads to additional computational efficiency.

In Fig. 6 we overlay the results of this treatment with the prior results of Fig. 5. The undershoot at the right
edge of the first zone is made less severe by the constraint of continuity, but this basis still suffers from the lack
of monotonicity unless lumping is used in order to avoid it.

In Fig. 7 we show the temperature of the continuous solution one centimeter into the slab, at a time
t = 0.035 sh, as the size of the zone is refined. The data points fit a quadratic very well, demonstrating that
the error scales as the square of the size of the zone.

temp (keV)

e T T T T 1
0 1 2 3 4 5

position (cm)

Fig. 6. A calculation showing the effect of enforcing continuity, at a time # = 0.035 sh. The discontinuous five zone solution is shown as
well as the continuous five zone solution. The smooth curve is the converged 50 zone solution.
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Fig. 7. The temperature of the continuous solution for the problem shown in Fig. 6, at a position of one centimeter and at a time
¢ =10.035 sh, as a function of the zone size. The solid curve is a quadratic fit to the data, 0.25355 — 0.037dx? demonstrating that the error
scales as square of the zone size, dx.

11. Marshak wave propagation in optically thick medium

Up to this point we have explored the characteristics of a number of solution options using problems
with an optical thickness of one mean free path per zone. The difference formulation reduces the Monte
Carlo noise for optically thick problems, but our prior implementation, which used a piecewise constant
treatment of the material temperature, forced calculations to be limited to roughly one mean free path per
zone in order to avoid energy teleportation. In this section we explore the behavior of our continuous
piecewise linear implementation of the material temperature, 7, in the presence of optically thick zones.

Our test problem is, again, Marshak wave propagation into an initially cold medium. For the purpose of
this demonstration, we use the continuous basis function set defined in Eq. (55), with conditional lumping of
the material energy using the piecewise linear treatment of the temperature. As noted earlier, we lump only the
material energy, and in this case we lump the material energy only when a negative temperature excursion
would otherwise occur. The mechanism for handling lumping is rather simple. If a negative temperature excur-
sion occurs during an iteration of the Newton—-Raphson solution for the temperature, the temperature is set to
zero and the lumped form for the material energy in that zone is then used for the remaining iterations. The
incident radiation flux is applied to the left side of the problem as a 1 keV blackbody that is turned on at the
start of the simulation. The grey opacity of the material is 200 mean free paths per cm, with a specific heat
pc, = 0.1 (jerk/cc keV) and a time step size of 0.01 sh.

In Fig. 8 we show the material temperature at 30 sh for four instances of the problem, using 10, 20, 40 and
80 zones, respectively. The 10 zone case provides zones that are 100 mean free paths thick, scaling down to the
80 zone case that provides zones that are 12.5 mean free paths thick. The result for the piecewise linear treat-
ment of the temperature, shown in Fig. 8, is in sharp contrast to the behavior of the piecewise constant treat-
ment of the material temperature, shown in Fig. 9. The error in the piecewise constant solution scales roughly
linearly with zone size, while the position of the leading edge of the Marshak wave for the piecewise linear
treatment, neglecting the foot that must be the size of a zone, appears to be independent of the zone size. This
is evidence that our extension of the SIMC method for non-linear time dependent photon transport provides
efficient and accurate calculations in thick media.
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Fig. 8. Marshak wave problem, 200 mean paths per cm. The material temperature at a time ¢ = 30 sh is shown. For our piecewise linear
solution method, the speed of the wave is independent of the size of the zone.
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Fig. 9. A Marshak wave problem, 200 mean paths per cm, comparing the piecewise constant implementation of the difference formulation
to the piecewise linear implementation. The material temperature at ¢ = 5.0 sh is shown. The piecewise constant curves are for 80, 200, 400
and 800 zone solutions, from the right to the left in the plot. The solid line is the 80 zone piecewise linear solution.

12. Discussion

We have extended the piecewise linear treatment of the material state variable for the Symbolic Implicit
Monte Carlo (SIMC) transport method, originally developed by Clouet and Samba [7], to the case of the
non-linear time dependent equations of photon transport, under conditions of local thermodynamic equi-
librium (LTE), in the difference formulation. The use of the difference formulation removes two hurdles
that prevent practical application of the method for the standard formulation of photon transport: the
difficulty of sampling a transport source term that depends upon the material opacity at the location sam-
pled, and the Monte Carlo noise that becomes an impasse when attempting to use the method in thick
media.
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In constructing a solution to the non-linear transport problem, one has the choice of linear treatment of the
source terms and non-linear treatment of the material energy; or non-linear treatment of the source terms and
linear treatment of the material energy. In implementing time dependent solutions for problems involving
steep gradients, thermal or Marshak waves, we find that the lack of monotonicity occurring in similarly trea-
ted heat flow problems also occurs in radiation transport, and that the technique of lumping the material
energy is effective in resolving the difficulty. We lump the material energy in only those zones and time steps
where the consistent treatment of the material energy would produce a negative temperature excursion. This
only occurs near the leading edge of a Marshak wave as it propagates through cold material. The need to lump
the material energy in the presence of steep gradients produces a preference for a linear treatment of the mate-
rial energy.

In addition to the original discretization method of Clouet and Samba, we have developed a method of
enforcing continuity at the interfaces between interior zones; it is appropriate when the material opacity is
not discontinuous. It reduces the number of variables that one must solve for and reduces the problem with
monotonicity, although it does not remove it. Enforcing continuity between two zones with markedly different
material properties would not allow correct treatment of the boundary layer and discontinuity that might
appear in the continuum limit. In this case, one allows the discontinuity by not collapsing the matrix at the
interface in question.

The SIMC implementation of the solution to the coupled transport and material energy equations does
require the construction of a non-linear system that must be solved, involving the influence matrices formed
by tracking Monte Carlo particles born during the current time step to remotely located zones where they
deposit energy. The dimension of an influence matrix scales with the total number of temperature unknowns
in the problem. The bandwidth of the matrix is controlled by the size of the time step, relative to the light
travel time between zones, and by the optical thickness of the problem that allows one to stop tracking a par-
ticle when its weight has become too small. We do not focus on the issues of solving this non-linear system in
this paper, but practical application of the method would obviously be required to do so. We would like to
note that collapsing the matrix, to produce the continuous solution where it is appropriate, drops the size
of the non-linear system.

In the results we have presented, time was discretized in an implicit piecewise constant manner, producing
first order accuracy in the time integration. The basis function approach can be applied to the temporal treat-
ment of the strength of the source terms and it is possible to sample this treatment of the source terms using
the SIMC method. Full exposition and evaluation of this extension is beyond the scope this paper, although it
follows from the methods we describe in a straightforward manner. We plan to provide an exposition of the
extension to piecewise linear time treatment, and computational results, in future work.

Our piecewise linear SIMC treatment of photon transport in the difference formulation produces excep-
tional performance in the diffusion limit, while offering seamless, accurate, treatment in optically thin portions
of a problem. The propagation speed of a Marshak wave in optically thick media is independent of the zone
size, while the piecewise constant SIMC treatment requires a per-zone optical thickness of less than one mean
free path in order to produce a solution that approximates the correct speed of propagation.

We have explored the properties of our piecewise linear SIMC treatment of the difference formulation for a
constant opacity, as a function of temperature and frequency, and for static material without physical scatter-
ing. Note that the source terms in the difference formulation are independent of the material opacity; they
depend only upon the space and time derivatives of the material temperature. Therefore, inclusion of a real-
istic material opacity only modifies the exponentiation and energy deposition of Monte Carlo particles as they
are propagated, posing no additional difficulties in the source terms. The inclusion of physical scattering, like-
wise, poses no additional difficulty for the difference formulation.

The piecewise linear treatment of the difference formulation provides an accurate transport technique that
is capable of robustly addressing problems in both optically thin, and optically thick, materials. It is capable of
producing accurate transport solutions in the diffusion limit. An open question is whether or not the technique
referred to as source tilting, that is used in the Implicit Monte Carlo (IMC) [11] method in order to improve
the behavior of that algorithm for thick systems, can be used in the SIMC treatment of the difference formu-
lation, and whether it will provide accuracy similar to the self-consistent treatment at a lower computational
cost. We plan to explore this possibility in the future.
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Appendix A. Spatial sampling for linear temperature
As noted earlier, we have multiple terms in the expansion of T in the finite element basis functions. These
terms each have unique spatial distribution functions from which we wish to sample. According to [12], the
standard method for sampling such a distribution function is:
(1) Integrate the probability density function (p.d.f) to obtain a cumulative distribution function (c.d.f.).
(2) Invert the c.d.f.
(3) Pass to this inverted c.d.f. a uniform random number between 0 and 1 in order to generate a value sam-

pled according to the p.d.f.

Acknowledging that there are other approaches to sampling, for instance rejection techniques, this will be
our plan of attack. We list the c.d.f.s of our normalized distribution functions below:

Ax/ T S (57)
Ax i " pady = %—% lei (58)
i nyidngx—i, (60)
ii Xl/zdx—lAOfo ZAO;S fxy“—%, (62)
% x?x%dx=fxyg—%+%v (63)
2 [ ame=2-2 (64)
and
é/oyxgdx:Ayx—: (65)

We must now invert each of these functions. To do so, we employ Newton—-Raphson iteration. This method
converges rapidly if given a good starting point. Our goal then is to find an approximation for the inverse of
these functions that we can use as the starting point for the Newton—Raphson solver. This will allow us to
sample these source terms using a single uniform random number, R, such that 0 < R < 1.

A.1. The method

We make three approximations for each of these functions, depending upon the value of the random num-
ber, R. If R is small (near zero) or large (near one) we make appropriate approximations. If R is in neither of
these regimes, we exploit the fact that these functions are nearly linear within this range. The transition values
between a “low,” “medium” and “high” value of R are determined experimentally, by graphically displaying
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our first guess solutions and the actual function. As our goal is to reduce the number of iterations required by
the Newton—Raphson solver, we only need to find a sufficiently good first guess.

Two of these functions, Egs. (60) and (65), have algebraic inverses. Furthermore, because the basis func-
tions y; and y, are obtained from each other via reflection about the center of a zone, this symmetry can
be exploited in the distribution functions for the particle position. We only need to uniquely sample half of
the distribution functions. The others may be sampled by exploiting symmetry. For instance, if we look at
the left hand side of Eq. (61), we notice that all values for this function have reflected counterparts in Eq.
(65). If we sample Eq. (65) and subtract this value from the width of the zone, we obtain a properly sampled
value for Eq. (61). By exploiting this symmetry we need to only focus on inverting three of these c.d.f.s. We
choose to invert Egs. (59) and (64). As there is no symmetric counterpart to Eq. (63), our final choice is made
for us. The method is identical for each of these functions. We will outline it in the context of Eq. (59) below.

A.2. Approximation for small R
We begin by simplifying the notation. Each time we pass our function a uniform random number, R, such

that 0 < R < 1, we return a position in space. So, we drop the normalization constants and let x = y/Ax be the
fractional position within the zone. Therefore, Eq. (59) becomes

R = 4x — 3x*. (66)
We now define a function, f{R), that satisfies the condition R - f{R) = 4x>. We know from Eq. (66) that
R =4x* — 3" (67)
=R-f(R) - 3x*, (68)
3x
—R-f(R) = R-[(R). (69)

When R is small, so is x. To first approximation, then, R ~ 4x° and we invert this to get a value for x. There-
fore, Eq. (69) becomes

3 )
R=rr®) - 1®)- () (70)
We can now solve for f{R):

1
JR) =—.
-3’
Now, recall our goal is an initial guess for x to pass to the Newton—Raphson solver. Letting this guess be xg,
we know from above that R - f(R) = 4x}. We can now invert this relation and insert our value for f{R):

1

3

(71)

R
Sl e (72)

4

When R is sufficiently small, we pass to the Newton—Raphson solver the initial guess, x,, as given by Eq. (72)
above.

A.3. Approximation for R near one

When our value of R is close to one, we use a similar approximation to obtain a value for xy. We define new
variables, d and y such that R=1 — d and x =1 — y. Since both R and x are near one, d and y are small. Let
us take Eq. (66) and substitute our new values for R and x to get a function of 4 and y:

R = 4x* — 3x*, (73)
1—d=4(1-y)° =301 —-y" (74)
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Expansion and simplification yields
d = 6y> —8° +3y*. (75)

Because both y and d are small we drop the higher order terms and let d ~ 6y°. Inverting yields

1

= (%) (76)

We now have a starting point for the Newton—Raphson iteration

x0=1—y=1—(9%:1—((1;13))%. (77)

Eq. (77) yields a first guess for the numerical solver given a value of R close to one.

A.4. Results

Fig. 10 shows our first guess for x, plotted against the actual converged solution. Graphically, we deter-
mined that our small R approximation is good for values of R less than 0.2. Similarly, our near-one solution
is good for values above 0.92. Within the region where neither of the discussed approximations is valid, we
have made a linear fit to the curve. The equation of this line is xo = 5/9R + 0.31. With these values for x,,
the Newton—-Raphson solver converges typically within two or three iterations. Fig. 11 shows a histogram of

the normalized sampling of y,3 using 100,000 uniform random numbers between zero and one. The actual

normalized function (y;3 = 12(—x* +x?)) is also plotted. It is clear that our sampling is accurate, to within
sampling noise. As the number of random numbers increases, the histogram converges to the function. Our
sampling of the other two functions, Egs. (63) and (64) is similar.

Appendix B. Improved frequency sampling
In the difference formulation, the source terms are derivatives of the Planck function. In the piecewise con-

stant (in space) discretization there exist discontinuities in @ both between zones and between time steps. In
the piecewise linear (in space) discretization, @ can still be discontinuous between zones, and in time, leading

Fig. 10. The first guess for the solution, x,, using our approximation techniques, shown with the black dots, plotted over the converged
c.d.f. shown with the solid black line. Our X is derived differently depending upon the value of R chosen. For small and relatively large
values of R, we use the solutions outlined in Appendices A.2 and A.3 respectively. Otherwise we approximate the converged c.d.f. linearly.
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0 —

Fig. 11. Our normalized sampling of the function 7,3 with 100,000 random numbers plotted against the actual function. The zone width
is taken to be one. The difference between the histogram and the actual function is from sampling error.

to the requirement for sampling (4m/c)(0B/0®) for finite differences. In the appendix of [2] a rejection technique
was used to sample the frequency distribution of these sources. Here, we develop an improved method, focus-
ing on the 0B/dx source. The dB/0t source is similar.

Let us assume that at some position x = x; the material state variable jumps from @, to ®,. Integrating the
0B/0x source in Eq. (6) shows that

- / Z—fdx = —u[B(v, (xi + €)) — B(v, (xi — )], (78)

where € is a small distance. Now, if we note that the material state variables to the left and right side of the
discontinuity are @; and @, we can rewrite Eq. (78) as

” 0B
—u %d‘p = —u[B(v, ®2) — B(v, )] (79)
Dy
Now we use the factorization of B(v, ®) = (c¢/4n)b(v, )P, Eq. (5), to rewrite Eq. (79), obtaining
”2 0B c c [b(v, @)@y — b(v, ®,) P,
—u » @ddj_ —,uﬁ[b(v, @2)4')2—1)(\), @1)@1] = —ﬂﬁ ¢2_¢1 (@2—@1). (80)

Let us call the term in the brackets f]v, @1, @,]. We now show that f[v, &, ®,]is a probability density function.
For this, f]v, @, ®,] must be strictly positive and integrate to unity for all frequencies.

The first condition is simple: B(v, ®) is strictly monotonic in @. Namely, if @, > &, then B(v, ®,) > B(v, )
for all values of v. As such, the signs of the numerator and denominator of f[v, @, ®,] will always match.
Therefore, f[v, @, ®,] will be positive for all values of v.

To demonstrate the second condition, we integrate f[v, &, @,] over all frequencies

/ Sy, @1, D] dv :/ {b(v’ @) P, — b(v, 4"1)‘151} v
0 0 (DZ — (Dl

:ﬁ[/Omb(v,diz)dizdv—/Oxb(v,d?l)d)ldv} (81)

Using Eq. (4), we get our result

/Oocf[v,¢1,¢2]dv:ﬁ[(p2—(pl]:1. (82)
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Therefore, fv, @, ®,] is a probability density function for frequencies.
We need a way to sample f[v, @1, »]. If we rearrange Eq. (80) we get

1 ® 41 OB
fv, @y, P2] = m [Dl {C @(P} do. (83)

This means that the frequency distribution for a finite jump across a boundary is an average of the term in the
brackets in Eq. (83) over the jump in @. It can be found by Monte Carlo averaging over the interval in @. Our
algorithm to do so employs a few steps:

(1) Sample a value of @ uniformly on the interval [@{, ®,].

(2) From this @g,pp1e, calculate the corresponding Tsampie = (@samp]c/a)l/ 4

(3) Sample the term in the brackets of Eq. (83), returning a value for vgmpie according to this distribution.
This is done using the method described in the appendix of [2].

Fig. 12 shows the results of our sampling of v, @, ®,] plotted against the function f[v, @, ®,] for different
values of @, and @,. There is excellent agreement between the sampling and the distribution function in all
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Fig. 12. Our normalized sampling of the function f[v, @, ®,] with 100,000 random numbers plotted against the actual function for varying
values of @; and @,. Our sampling is accurate when the two temperatures are close together or far apart, as shown in the upper right and
upper left plots, respectively, regardless of whether @, or @, has the larger value. The bottom left plot shows accuracy when one
temperature is zero. In this case, we are plotting b(v, ®;). When the two temperatures are identical, the drawn function is (41t/ca)0B/0®.
Even in this case, our histogram matches well.
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cases. Our histograms have been scaled to have unit area, whereas fv, &, @,] is already normalized. In the
case where @; = &,, f[v, ,, @] is undefined. However, as described in the appendix of [2],
lim b(v, @1)@1 — b(V7 @2)@2 o 4_TC 6B(v, T)
B — s (@) — @) ~ca Tt

(84)

Thus, we plot the function [4n/ca][0B(v, T)/0T*] against our histogram in the bottom right of Fig. 12. Our
sampling algorithm does not change at all. This new method of sampling is both robust and accurate, handling
all limiting cases. Our two temperatures, @; and ®,, can be close together, far apart, identical or zero. We do
not need to employ a rejection technique, nor check the ratio of the two temperatures, to accurately sample the
frequency distribution.
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